Advanced Algebra and Trigonometry

Text:	Larson, Hostetler, & Edwards. <i>Precalculus with Limits: A Graphing</i>
	Approach 3 ^{ra} Edition, Houghton Mifflin Company: New York.

	Study and Solutions Guide; Test Item File; Testing CD-ROM; TI-84 Plus
	Silver graphing calculator (Smartview emulator software)

C	
Course	Advanced Algebra III and Trigonometry is a course that expands the
Description:	concepts of functions from Algebra II and introduces trigonometry to
	prepare students for calculus. This course uses three approaches to
	problem situations: an algebraic approach, a numerical approach, and a
	graphic approach to investigate algebraic and transcendental concepts.
	Problem-solving situations provide all students an environment that
	promotes communication, engages student reasoning, and fosters
	connections within mathematics, to other disciplines, and to the real
	world. Students will use algebraic and trigonometric models to represent,
	explore, and develop abstract concepts. The use of appropriate
	technology will help students apply mathematics in an increasingly
	technological world. Students will be challenged through critical thinking
	models that will enable them to practice skills necessary for higher
	mathematics education.

Methods of Evaluation:	Students can be evaluated through tests, quizzes, homework problems, lab grades, semester exams, and/or any other form of evaluation instrument the instructor finds applicable to the course.
---------------------------	--

Pace of	First Semester: P1-4.1, 9.1-9.7, Appendix B
Instruction:	Second Semester: 4.2-8.5, 10.1-12.4

Course	At the end of this course students should be able to:
Objectives:	1. Solve equations and inequalities algebraically, numerically, and
	graphically.
	2. Solve and graph functions and any reflections, shifts, or stretches.
	3.Create combination functions and inverse function
	4. Solve quadratic equations algebraically and graphically.
	5. Solve higher degreed polynomial functions algebraically and
	graphically.
	6. Find intercepts, zeros, and asymptotes of functions.
	7. Graph rational functions

Savannah Christian Preparatory School – Curriculum, Advanced Algebra III and Trigonometry 2 $\,$

8. Solve for complex zeros.
9. Use sequences, series, and probability to predict outcomes.
10. Understand exponential and logarithmic functions and their graphs, and
the real world applications of these transcendental functions.
11. Solving exponential and logarithmic functions.
12. Understand and use radian and degree measures.
13.Understand the Unit Circle and its applications in problem solving.
14. Use right triangle trigonometry to determine side lengths, angle
measures, and area.
15. Be able to graph the six trigonometric functions with transformations.
16. Find inverse trigonometric functions.
17. Use Fundamental Identities.
18. Solve trigonometric equations.
19. Verify trigonometric identities.
20. Use the Sum and Difference trigonometric formulas, as well as Multiple
Angle and Product-Sum formulas.
21. Determine the Law of Sines and the Law of Cosines and use them in real
world modeling problems.
22. Investigate vectors in 2- and 3-space and find dot-products.
23. Solve systems of equations and inequalities in 2 and 3 variables.
24. Employ matrices to solve systems of equations.
25. Find the inverse of square matrices.
26. Find the determinant of a square matrix and its applications.
27. Solve height and distance problems using angles of elevation and angles
of depression.
28. Use vectors as a tool in other applications of trigonometry.
29. Determine the items in a sequence or series.
30. Determine and use arithmetic and geometric sequences and series.
31. Find partial sums of arithmetic series.
32. Use induction and deduction to solve problems.
33. Use the Binomial Theorem and apply it to real world modeling problems.
34. Use the Counting Principle to determine probability.
35. Understand and be able to generate formulas for topics in analytic
geometry.
36. Understand conics, parabolas, ellipses and hyperbolas, their equations,
and their graphs.
37. Use parametric equations to solve motion problems.
38. Use polar coordinates and polar equations to generate polar graphs.
39. Determine the polar equations of conics and develop graphs.
40. Have a basic understanding of limits and be able to evaluate limits in
given functions.
41. Apply the difference quotient to develop the idea of the slope of the
tangent line to a curve.