# Geometry 

| Text: | Bass, Charles, Johnson \& Kennedy (2004). Prentice Hall mathematics: <br> Geometry, Prentice Hall: Upper Saddle River, New Jersey. <br> Or <br> Kalin \& Corbitt (1990). Prentice Hall: Geometry, Prentice Hall: Upper <br> Saddle River, New Jersey. |
| :--- | :--- |
|   <br> Mapplemental  |  |


| Course <br> Description: | Geometry is a course that uses problem situations, physical models, and <br> appropriate technology to investigate geometric concepts, relationships, <br> and systems. Problem-solving situations provide all students an <br> environment that promotes communication, engages student reasoning, <br> and fosters connections within mathematics, to other disciplines, and to <br> the real world. Students will use physical models to represent, explore, <br> and develop abstract concepts. The use of appropriate technology will <br> help students apply mathematics in an increasingly technological world. <br> The concepts/topics emphasized in the course include measurement, <br> geometric patterns, coordinate geometry, two- and three-dimensional <br> figures, transformational geometry, congruence, and similarity. Students <br> will be challenged through critical thinking models which will enable <br> them to practice skills which will be needed for higher education <br> acquisition. |
| :--- | :--- |


| Methods of <br> Evaluation: | Students can be evaluated through tests, quizzes, daily practice sets, <br> homework problem sets, lab grades quarterly exams, semester exams <br> and/or any other form of evaluation instrument the instructor finds <br> applicable to the course. |
| :--- | :--- |


| Pace of | First Semester: | Units 1-6 |
| :--- | :--- | :--- |
| Instruction: | Second Semester: | Units 7-12 |


| Course |  |
| :--- | :--- |
| Objectives: | At the end of this course students should be able to: <br> 1. Make plausible conclusions based on patterns observed under the <br> foundation blocks for the structure of Geometry. <br> 2. Measure segments and angles. <br> 3. Use constructions and the coordinate plane to represent geometric <br> figures. <br> 4. Write conditionals, biconditionals, and definitions. <br> 5. Use conditionals, biconditionals, and definitions and deductive <br> reasoning to conclude that other statements are true. <br> 6. Apply deductive reasoning to form conclusions using Algebra. <br> 7. Use deductive reasoning to study the elementary proofs and form <br> significant conclusions about geometric relationships. |


|  | 8. Use deductive reasoning to make conclusions about parallel and perpendicular lines. <br> 9. Use parallel lines to learn about angle measures in triangles and other polygons. <br> 10. Think about parallel and perpendicular lines in a coordinate plane. <br> 11. Understand the meaning of congruent polygons. <br> 12. Prove two triangles congruent by five different methods. <br> 13. Prove triangles congruent and discover properties of the isosceles triangle. <br> 14. Draw other conclusions, once two triangles have been proven congruent. <br> 15. Understand the concept of three lines passing through a point. <br> 16. Understand two other types of statements that are related to a conditional as well as indirect reasoning. <br> 17. Deduce information about inequalities in triangles by applying indirect reasoning. <br> 18. Understand properties of parallelograms and quadrilaterals. <br> 19. Place figures in the coordinate plane and verify the properties using coordinate techniques. <br> 20. Understand the use of finding the area of a rectangle. <br> 21. Understand the Pythagorean Theorem and its converse to find relationships in special right angles. <br> 22. Find the areas of special quadrilaterals and regular polygons. <br> 23. Understand the relationships between similar polygons. <br> 24. Prove similar triangles. <br> 25. Understand the relationships between perimeters and areas. <br> 26. Use right triangles to define the sine, cosine, and tangent ratios. <br> 27. Solve height and distance problems using angles of elevation and angles of depression. <br> 28. Use vectors as a tool in other applications of trigonometry. <br> 29. Understand special three dimensional figures built form toe <br> dimensional figures such as triangles and rectangles. <br> 30. Work with space figures to create three dimensional drawings. <br> 31. Use perimeter and area to find surface and volume. <br> 32. Understand the properties of circles, lines and segments that intersect circles. <br> 33. Understand how the angles formed by these lines and segments are related to the arcs the intercept on a circle. <br> 34. Describe a set of points as a locus. <br> 35. Use transformations known as reflections, translations and rotations to create a congruent image of a given shape. <br> 36. Use transformations for relating two given congruent shapes to each other. <br> 37. Understand symmetry and tessellation. |
| :---: | :---: |

